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Abstract-The equations of one-dimensional radiative energy transfer are extended from their classical 
astrophysics form to include walls of arbitrary radiative properties. The concepts of emissivity 
and penetration length are examined. As an application, the case of the steady infinite flat layer is 
considered, with conduction and radiation present. The wall conditions are so chosen as to give a good 
model of a low-speed high-temperature boundary-layer. It is found that the effect of the “long-range” 
process of radiation is to smooth out the temperature profiles and relieve the sharp temperature 
gradients at the cool wall. As a result, the application of the exact method yields a lower value of both 
components of the total heat flux (radiation plus convection) than calculated previously by assuming 
a temperature profile on the basis of conduction only. Such coupling of convective and radiative fluxes 
is governed by the magnitude of a non-dimensional parameter, depending on the physical properties 

and the flow geometry of the problem. 

Rbum&-Les equations de la transmission unidimensionnelle d’knergie par rayonnement ont &5 &en- 
dues, k partir de leur forme classique en astrophysique, de fagon & traiter le cas de parois B propriGs de 
rayonnement quelconques. Les notions d’8missivitk et de longueur de p&&ration sont examintes. Le 
cas d’une couche infinie, plane et permanente, en prksence de conduction et de rayonnement, est trait6 B 
titre d’application. Les conditions de paroi sont choisies de faGon & donner un bon modtle de couche 
limite k basse vitesse et B haute tempkature. On trouve que l’effet & grande distance du processus de 
rayonnement est d’adoucir les profils de temperature et de mettre en relief les importants radients de 
tempbrature & la paroi froide. I1 en rksulte que I’application de la mtthode exacte foumit pour les 
deux composantes du flux de chaleur total (rayonnement + convection) une valeur plus basse que celle 
calculke prkkdemment en supposant le profil de tempkrature dfi B la seule conduction. Une telle com- 
binaison des flux de convection et de rayonnement est dCtermin6e par la grandeur d’un parambtre sans 
dimensions d&pendant des propri&% physiques et de la gkomttrie de l’&oulement du probl&me. 

Zusammenfassung-Die Gleichungen fiir die eindimensionale Energieiibertragung durch Strahlung wird 
von ihrer klassischen Form der Astrophysik erweitert, urn such Wtinde mit beliebigen Strahlungseigen- 
schaften einzuschlieBen. Die Begriffe der Emission und der Durchdringungskinge werden untersucht. 
Zur Anwendung wird eine unendliche flache Schicht im Beharrungszustand betrachtet, in der Leitung 
und Strahlung stattfindet. Die Wandbedingungen werden so gewtihlt, dass ein brauchbares Model1 fiir 
eine Hochtemperaturgrenzschicht bei kleinen Geschwindigkeiten entsteht. Es zeigt sich, dass die 
Wirkung der Strahlung die Temperaturprofile ausgleicht und den steilen Temperaturgradienten an der 
kalten Wand abflacht. Die Anwendung der exakten Methode ergibt geringere Werte ftir beide Kompon- 
enten des gesamten WBrmestroms (Strahlung und Konvection), als sie sich bei der Annahme eines 
Temperaturprofiles fiir reine Leitung bisher ergeben hat. Das Zusammenwirken der WLrmestrtime 
durch Konvektion und Strahlung wird durch eine dimensionslose Kenngriisse bestimmt, die von den 

Stoffwerten und der geometrischen Anordnung abhLngt. 

Abstract-&accnqecI;lre ylJaBHeHIl$l O~HOMepHOrO JIj’YHCTOrO nepeHoca aHeprPIH, 
HCnOJIb3geMbIe B aCTpO#H3HKe PaCnpOCTpaHmOTCFI Ha CJIJ’Yati JQ’YHCTOrO TenJIOO6MeHa B 
OrpaHHYeHHOM IIpOCTpaHCTBe C nPOI53BOJIbHbIMM PajJHaqHOHHbIMH XapaKTepEfCTJiKaMH CTeHOK. 
PaCCMaTpIiBaIoTCH IIOHRTKFI CTeneHM YepHOTbI Tena II my6HHbI IIpOHkfKHOBeHHR. B KaYeCTBe 
npMMepa paccMaTpnBaeTcn cayYat cTa4HoHapKoro HeorpaKHYeHHoro nnocKor0 CJIOR np~ 
HBJIHYIMII TenJIOnpOBO~HOCTH II JIyYMCTOrO TenJIOO6MeHa. YCJlOBLlR Ha CTeHKaX BbI6paHbI 
TaKMM o6pa3OM, YTO6bI IIOJIJ’YllTb XOpOmyIO MOAWIb HII3KOCKOpOCTHOrO BbICOKOTeMnepa- 
TypHOF.0 norpannYHor0 CJIOH. YCTaHOBJEHO, YTO BJIW=IHHe ,,AanbHO~eBCTBylomrlerO“ 

t The work described in this paper was supported by the United States Army Rocket and Guided Missile 
Agency, under contracts Nos. DA-1 l-O22-ORD-2642 and DA-1 l-022-ORD-8130. 
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IIpOQeCCa H3JIy9eHLIH 3aKJIPYXaeTCR B CWIaNHBaHMH TCMIICpaTJ’pHbIX IIpO$WICti M J’Mt?Hb- 
IBCHBM ,,OCTPOTbI“ TCNICpaTypHbrX rparBU?HTOB Ha XOJIOAHOn CTt’HHC. ~PHMCHCHBC TO’i- 
HOrO MCTOAa ,!@tiT 6oBee HM~KYIO BenHYHHy o6eBx COCTaBJIFUO~BX rIO.?HOrO IIOTOKa TenJIa 
(JIJ’YBCTOn M KOHBCKTEIBHOZt) HeHeBB BTO BbI’rMCJIRJIOCb npemge, Borxa Bpe~noBaranocb, 
BTO TCMBBpaTypHbIfi BpO+Bj?b OBPC~CJIRCTCR TOJlbKO TCBJIOIIpOBOHOCTbIO. @IB AaHH0i-i 

3aAaW4 COqeTaHMe KOHBBKTMBHOI-0 EI JIJ'JIqCTOrO IIOTOKOB pW)'JIilpyeTCR BeJtIZYRHOKI 6e3pas 
MepHoro napame-rpa, xamrcmqero OT (PmmecK~x CB~~CTB EI reo~efpna BoToBa. 

NOTATION 

equation (34) ; 
Planck’s function (equations (6) and 

(7); 
variable coefficient (equation (11) ) ; 
velocity of light; 
radiative energy; 
equation (19) ; 
Planck’s constant ; 
conduction heat transfer coefficient; 
specific intensity (equation (1) ) ; 
emission coefficient ; 
plane layer thickness; 
direction of incident radiation ; 
penetration length; 
equation (37) ; 
unit vector normal to surface da 
(Fig. 1); 
radiative energy flux; 
reflectivity; 
elementary length along L; 
integration variable (also: time, in 
equation (1) ) ; 
absolute temperature; 
transparency; 
flight velocity; 
vertical co-ordinate (Fig. 2) ; 
absorptivity ; 
emissivity ; 
spherical co-ordinate of L (Fig. 1) ; 
absorption coefficient; 
equation (9) ; 
frequency ; 
Stefan’s constant; 
surface element (Fig. 1); 
density ; 
optical thickness (equation (8) ); 
spherical co-ordinate of L (Fig. 1) ; 
solid angle (Fig. 1). 

Subscripts 

g, gas ; 
w, wall ; 
v, frequency ; 

0, lower wall; 

2, L upper wall. 

Superscript 
* 2 floating boundary. 

INTRODUCTION 

ENERGY transfer by radiation has been for a 
long time a familiar problem to the physicists 
concerned with high-temperature gases. Its 
important role in specialized subjects of applied 
physics, such as blast waves, plasma physics and 
astrophysics has been the object of many 
studies and these different domains have 
attained a high degree of organization [ 1, 2, 11, 
151. 

Technological progress has, meanwhile, 
steadily increased the demand for engineering 
designs capable of withstanding higher and 
higher temperatures. The associated problems 
of radiative energy transfer are becoming, 
therefore, increasingly important in the field of 
combustion [4, 51 and propulsion. They are also 
to be considered, now, in very high speed aero- 
dynamics [16] and new reactor concepts. 

A major difference between the two classes of 
problems just described is due to the existence of 
solid boundaries in most engineering systems 
using radiative media. In this paper, the mathe- 
matical expressions of radiant energy transfer 
developed in astrophysics will be extended to 
include wall effects in simple one-dimensional 
geometries. A typical application will be made to 
a steady infinite flat layer, with wall conditions so 
chosen as to give a good model of a low-speed 
high-temperature boundary layer. 

A. ONEDIMENSIONAL RADIATION FLUX 

Specific intensity I,, and flux qy 
The fundamentals of the theory of radiation 

transfer in gases can be found in standard text- 
books of astrophysics [l, 21. Two important 
quantities to be used extensively in this paper will 
be redefined here. The notation adopted is that 
of Kourganoff [3]. 
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Let dE, be the amount of radiative energy in 
the frequency interval v, v + dv transmitted 
through an elementary surface da at a point P 
during a time interval dt within a solid angle 
dw (see Fig. 1). The normal n to the surface and 

FIG. 1. Radiation intensity symbols. 

the direction L of the solid angle form an angle 
0. IV, the specific intensity in the direction L is 
defined as: 

I, = lim. 
dE, 

I cosfldcrdwdvdt do, dw, dv, dt-0 (1) 

Accordingly, Z, depends on the location of P 
and on the direction L. Because of the intro- 
duction of cos ti in equation (l), the specificinten- 
sity Z, is usually independent of the angle 0 
between the direction L and the normal n to the 
elementary surface. It should be pointed out that 
this definition is not the one most frequently 
used in engineering ([17], equation 13-6), where 
cos 0 does not appear in the definition of the 
intemity. As a result, “engineering” radiation 
intensities vary with 0 (e.g. Lambert’s law). In 
this paper, the “astrophysics” definition of the 
intensity will be used (equation (1) ). 

The flux qV of radiative energy across the 
surface dcr, in the frequency interval dv, is 

obtained simply by summing up the quantity 

dE, 
~ = Iv cos 0 dw 
da dt dw 

for all the directions L (dw = sin 8 d0 d+). It is 
convenient to split the net flux qy into the con- 
tribution q$ coming from the side of the normal 

unit vector n and the contribution q; from the 
opposite side : 

4: = I, (0, 4) cos 0 sin 0 d8 & (2) 

q; = - n 
s s 

2n 
I, (0, 4) cos 6’sin 0 dd d$ (3) 

n/2 0 

Equation of radiative energy transfer 
The intensity, on a length ds, along the direc- 

tion L, is attenuated by absorption and scatter- 
ing away from the direction L, while it is rein- 
forced by the energy emitted by the particles 
along L and the scattering of photons from other 
directions into the direction L. 

The intensity 1, is therefore determined by 
the equation : 

dr, _= 
ds 

- 4 Ph + Ph (4) 

where K, and j, are, respectively, the absorption 
and emission coefficients [3]. It is further shown 
in [2, 31, that, provided the gradients of tem- 
perature are not too considerable and the 
densities not too small, “local thermodynamic 
equilibrium” can be assumed and equation (4) 
can be written: 

1 dr, - - -- 
PK~ ds 

= I, - B, 

where B. is Plan&s function [2]: 

(5) 

B, (T) = 2 
V3 

ce exp (hv/kT) - 1 (6) 

witb 

s m 

B= B, dv = ” TP 
0 7r 

(7) 

Specific intensity in one-dimensional problems 
A glance at equations (2) and (5) shows that 

all radiation problems but those with the 
simplest geometry, will be difficult to solve. 
In this study, only one-dimensional geometries 
will be discussed. 

It is convenient to define at this point the 
optical thickness 7, such that: 

dry = PKV dy (8) 
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where y is the privileged direction of the one- ~ad~at~on~u~ in ore-d~mensionalpro~~ems 
dimensional problem illustrated on Fig. 2. If 0 Since we confine ourselves to one-dimensional 
is the angle between the direction L and the problems, equations (2) and (3) can be integrated 
negatixe (downward) y-direction, then : with respect to $. One obtains: 

dy = --CL ds where p = cos 0 (9) 

r 

1 

q; = 2n 1, (II) t& (15) 
.O 

0 V 
0 

0 

FIG. 2. Multiple reflexions in a plane layer. 

Equation (5) can then be rewritten: 

tw 

The solution 1, (7,) of equation (10) is simply 
obtained by the variable coefficient method: 

1, = C(7J exp (T&) (11) 

The function C(T”) is, after substitution of 
equation (11) into equation (10): 

c-(-r”) = C(TZ) - J T B,(t) 
t -;- exp (-t/p) dt (12) 

TV 

where 7: is an arbitrary value, to be determined 
by the boundary value of the problem. For 
instance, the radiation directed upwards in 
Fig. 2 will be deter~ned by the condition at the 
lower wall: 7: = 0. After substitution, equation 
(11) becomes : 

.i 

7” 1; zzz 

0 
W) exp ‘I-@ - ~Jlp) $- -t 

+ 1; (0) exp (~4~1 (13) 

Similarly, the radiation directed downwards 
will be determined by the conditions at the 
upper wall : 

9; = 277 

s 

-lz* (PI t&P w9 

0 

It is then a simple matter to substitute 
equations (13) and (14) into (15) and (16). The 
result is: 

q; = 27f 
s 

r’Bv (t) E2 (7” - t) dt + 
0 

$_ 29; (0) G3 CT,,) (17) 

J Tw? 
q; = 2V B, (t) .% (f - 7,) dt + 

TV 

+ 29: (T”J G3 CT”2 - Ty) cw 

where the dependence on p appears through the 
fictions : 

E, (t) i J ’ pn-2 e-tie dp (19) 
0 

These functions are conveniently tabulated by 
Kourganoff [3]. The net flux qy is the difference 
between equations (17) and (18). 

To obtain the total flux, it is necessary to 
integrate the flux expressions for all wavelengths. 
To simplify the discussion, the medium under 
study will be assumed to be gray: by definition, 
the absorption coefficient K, will then be inde- 
pendent of the frequency v and so will be the 
optical thickness T,. The only wavelength- 
dependent function left in the expressions 
derived above, will be Plan&s function (equa- 
tion (6)). It can therefore be integrated 
separately (equation (7) ), and the subscript v 
will be dropped from the rest of the paper. 

B. WALL EFFECTSt 
The second terms, on the right-hand side of 

the expressions (17) and (18) of q- and q+, 

7 Part B of this pa&is a condensation of a more 
detailed study made by the Senior Author in Report No. 
A-59-8, School of Aeronaut&a1 Engineering, Purdue 
Unkersity, Lafayette, Indiana. 
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account for the contribution of the wall to the 
radiative flux. Whenever walls are non-existent, 
as it is the case in star photospheres, this term 
disappears and the expressions (17) and (18) 
take their classical Milne formulation [3]. 

In general, however, the contribution from the 
wall is determined by its absorptivity a,, its 
emissivity Ed, its transparency tr, and its 
reflectivity rw. The relations between these 
quantities are : 

a, + tr, + ru. = 1 (20) 

due to two additional reflections. The contribu- 
tion of the wall along a ray which has been 
reflected 2n times, is similarly attenuated by a 
factor : 

The total contribution of the upper wall is 
therefore equal to: 

aw, = cu (21) which can be rearranged {4r,r, Ei (T2) < 1 } as: 

The flux downwards qf in the slab geometry 
shown on Fig. 2, is at a given station 7, made of 

2rr 

several components : 
1 - 4r,r2 Ei (T2) 

~2 B(T2) E, (T2 - T) (22) 

(1) the flux from the gas slab 7 - 72 Using the same method to account for the 

2?7 
s 

T2 B (t) E, (t - T) dt 

other contributions to the flux, the expression of 
the net flux across station 7 is therefore: 

7 

(2) the flux from the upper wall, attenuated 
27=2 B (72) J% (T2 - T) 

q=q+-q-=2r T2B(t)E2(t-T)dt- 
s 7 

(3) the flux from the gas slab 0 - 72, after 
reflection on the upper wall and attenua- 

_ 2 
3r 

tion 
s 

7 
B(t) E,(T - t) dt + 

0 

27r 

T2B (t) Ez (t - T2) dt 2r, E, (T2 - T) 
+ 1 - 4r,r, E,” (TV) 

~2 B(T2) E2 (T2 - T) - 

0 - co B(O) UT) + 

(4) the flux from the lower wall, after two + l O B(O) -%(T2) 2r2 E2(T2 - T) - 

attenuations and one reflection : -1~ Bb2) &b2) 2ro Ed4 f 

2rr co B(0) E, (TV - 0) r2 2E, (TV - T) 
+ 2r, E3 (T2 - T) ‘I’B(t) E, (t-T2) dt - 

(5) the flux from the gas slab 0 - 72, after two s 0 

reflections and two attenuations : 
- 2ro J%(T) T2 B(t) E,(t) dt + 

1 J 23r 
72 

B(t)E,(t)dt’ x 
J 0 

i’ 
s 

T i 0 + 4ror2 &(T2) E2(T2 - T) 

X ro 2E3 (T2) r2 24 (T2 - T) 

B(t) E,(t) dt - 
0 

(6) the flux from the upper wall twice reflected - 4ror2 Ed%) G(T) T2 B(t) E,(t - 72) dt 
and three times attenuated s 0 li 

27r ~2 B(T2) & (T2)ro 2~52 (T2)r2 24 (T2 - T) 
(23) 

(7) . . . ., etc., . . . 
This lengthy expression is the most general 
form of the flux through a one-dimensional 

It is to be noted that the contribution from the non-scattering mediumt. Among its many 

upper wall in (6) is equal to its contribution in 
(2), except for the attentuation factor: t A completely general form, including non isotropic 

4rors E”3 (~2) 

scattering, is under preparation by R. Viskanta, School 
of Mechanical Engineering, Purdue University. 
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app~catio~ to special cases are familiar 
formulas. 

(a) Slab of very large thickness (star photo- 
sphere or blast waves): 

Eg = 62 = r(] = r, = 0 72 -+ cg 

4 = 2n 
s 

mL3(t) E&t - T) dt - 
7 

-22rr ?- 
f 

B(t) E(t) dt 
-03 

equation (1 l-4) of [3]. 

(b) Transparent medium between two gray 
parallel plates : 

K-O+-7 -0,EQ(~)~E3(O}=g,~=I-r 

q = u(Ti- T$) 
1 

1/Ez + i/Eo - i 
equation (4-5) of [5]. 

(c) Absorbing medium between two black 
body plates at same temperature TV: 

$0 = Fz = 0 , 50 = E2 = 1 

q = 27r 
f 

7a B(z) E,(t - T) dt - 
7 

- 27r 
s 

’ B(t) 4(t) dt + 
0 

+ 47r B( TJ E3( TV - T) - 4n B(0) L&(r) 

Assumealso~<l;thenE,1:l,E,~1/2-t: 

q = 2 J LoTo pudy - 2 ucPpicdy $ Y J 0 

+ a(T; - T;) - 2uT;ptc (L - y) + 2aT;prcy 

At the lower wall, 4’ = 0, 7 = 0, and since 
To = T, = T,, 

qm = 2 f” uT4pudy - 2oT,B ,DKi, 

JO 

and, since 2pluL = E (equation 
this is equivalent to: 

qw = IT (.z,T,4 - CZJ;) 

equation (4-57) 

(27) 1, 

of [S]. 

GOULARD 

C. PHYSICAL PROPER 

With these expressions of fluxes and intensi- 
ties available, it is now possible to describe the 
physical properties of the medium. in a form 
more directly applicable to transfer problems. 

Emissivity E of a constant-temperature gas layer? 
A simple application of equation (23) consists 

of the constant-temperature slab, with a trans- 
parent upper wall and either a cool [B(O) 2: 01, 
black-body (r. = 0) lower wall, or a transparent 
lower wall. The expression of the radiant flux on 
either face of the slab, is therefore: 

and 

q = 2v J “B(t) E,(t) dt (24) 
0 

q = 2aT4 
f 

72 E,(t) dt = - 2oT4 J T’ (f L%to1 
0 0 

and since Es(O) = 3, [see (31a)] 

q = oT” [l - 2 &(T2)] (25) 

If, furthermore, the medium is optically thin 
(i.e. T@ I), L&(T) can be written in good approxi- 
mation (3 la) : 

&(T) 2: + - T 

Hence : q = UP{1 -2(i-r,)j 

L= 2T,0T4 

= 2p~LaT~ (T3 < 1) (26) 

where L is the physical thickness of the layer 
corresponding to TV. It is then natural to call the 
quantity 2p~L the emissivity E of the gas layer: 

E --f 
L 

2PK (27) 

This convenient ratio has been tabulated, for 
instance, in [6] for high-temperature air. The 
coefficient K can be obtained directly from this 
relation. 

t This derivation of the relationship between E and K 
was suggested by W. Glauz, School of Engineering 
Sciences, Purdue University. It avoids the difficulty met 
in [6], in which the contribution of grazing rays in the 
slab (very large pus), is used in an “optically thin” 
approx~ation (small pus). 
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Penetration length I other parts. This is a great simplification in 
In the case studied above, equation (25) shows some transfer problems in re-entry aerodynamics, 

that, if there is a transparent or no upper wall where for most altitudes (p < po), velocities 
a black-body radiation flux to the lower wall (V<35,OOO ft/sec), and vehicle sizes (L< 100 cm): 
will be achieved only for -r2 + co (where E3 -+- 0). _L << E as illustrated in Fig. 3. 
The intensity variation along a beam of arbitrary 
angle (arbitrary fixed p) is, at the lower wall 
(T = 0) according to equation (14): 

oT4 7 1’ = -- 
s Q7 0 

2exp(-r/p)~ = 

CrT” (1 - exp(-7&)] (28) 
7r 

and, for optically thin layers (TV l), 

UT4 CT4 
I+ = - 72 = pIcL- (291 

Eln V 

It can be concluded from these two equations 
that both I and q depend on the absorption IO - 

properties of the medium, only through the I - 

optical thickness T. The optical thickness is 
therefore a useful dimensionless concept and is , I I I I ill, 

refered to often as the Bueger number (NB”) in rde, 
2 3 4 5 6 799fO 15 20 

the Russian literature [7]. T, 10” K 

*I,. 120,000 ff. 
I !I, II 

A useful index of the absorption properties of 10 20 30 40 l’, k ff/sec 
PW. 250,oooft. 6 I11 i LIP / 

a substance is also the physical thickness I 20 30 40 30 V, k WSCC 

~o~esponding to an optical thickness unity: FIG. 3. Length of penetration I = 11~~ in aerodyna- 
mic problems. 

1,’ 
PK On the contrary, if I < L, intermediate absorp- 

This “penetration length” I has been discussed tion takes place and at the limit, 1 plays the role 

in (81. It is shown in Fig. 3 for ~~-temperature of a mean free path (Rosseland), leading to a 

air in terms of temperature and density ratios, differential form for the flux expression q_ This 

using the values of e from [6]. is often a considerable mathematical simplifica- 

If the characteristic dimension L of the prob- tion which is justified in many cases [S, 7, lo], 

lem under study is much less than I, then including high temperature (T > 10,OOO°K), large 
size (L N IO4 cm) blast waves in air [ll]. 

D. THE PLANE-LAYER PROBLEM 

The deter~nation of the temperature profile 
and the “optically thin” layer approximation of and energy flux across an infinite plane layer of 
equation (29) can be used. We note that in uniform thickness and arbitrary wall tempera- 
equation (29), the contributions of all the ture, is a classical problem of conduction heat 
infinitesimal layers forming a layer of finite transfer [4], even when chemical reactions occur 
thickness L, are additive. Physically, this means in the layer or at the walls 1141. The energy 
that in optically thin layers, the energy radiated conservation equation to solve is then in purely 
in any part of the layer is not absorbed by the 

_. 
differential form. 
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The energy conservation equation 
This problem is greatly complicated, however, 

when radiation contributes appreciably to the 
energy transfer. In this case a complex integral 
term, equation (23), is added to the convection 
flux. Unless this new term can be reduced to a 
differential form, as for some cases discussed in 
Section C, no closed solution is available to this 
class of problems. 

In this paper, a numerical solution to the 
steady-state plane-layer problem is presented. 
The solution can be applied to the fluid-layer 
problem (Couette flow) if the velocity gradients 
are not too large (no energy dissipation term in 
the energy equation). Such a simple model, 
showing a close analogy with the boundary- 
layer problem in high-temperature flow, is 
considered here. The upper wall is transparent 
(emissivity c2 = 0, reflectivity rz = 0), and the 
lower wall is an opaque gray surface (emissivity 
rO, reflectivity r0 = 1 - Q). Equation (23) re- 
duces, in this case, to: 

q = 273. J 72 
B(t) E2(t - 7) dt - 

7 

-_ 277 
s 

7rl(t) E,(7 - f) dt - 27rt-o B(0) E3(7) - 
0 

-.- 4nr, &(T) 
s 

“B(t) E,(t) dt 
0 

The physical meaning of the four terms on the 
right-hand side of equation (30) is, respectively: 

(a) the energy radiated past the elementary 
slab T by all the elementary slabs located 
above (T < t < TV); 

(b) the energy radiated past the elementary 
slab T by all the elementary slabs located 
below (0 < t < 7); 

(c) the fraction of energy radiated by the 
lower wall that reaches the layer T, the 
other fraction being absorbed by the layer 
(0 - 7); 

(d) the fraction of the energy radiated by the 
slab to the lower wall, after partial reflec- 
tion by the lower wall and partial absorp- 
tion of the layer (0 - T). 

Substitution of this value of 4 into the energy 

conservation equation for the one-dimensional 
steady state: 

k i$ + q .= constant (31) 

yields a non-linear integro-differential equation 
that is satisfied by a temperature distribution 
T(y) to be determined.~ In the general non-gray 
case, this same method would apply with an 
additional integration of the radiative terms for 
all wavelengths. 

The solution of the aerodynamic J?OW problem 
A further (but not essential to the solution) 

simplification to the aerodynamic problems in 
radiant media is due to the low optical thick- 
nesses T involved (i.e. high penetration lengths 1, 
as seen on Fig. 3). In this case, Kourganoff 
([3], p. 255) shows that 

E,(t) = 1 - o(t) 

_&(t) = 4 - f + O(P) 
(3la) 

where O(P) means “terms of order n and higher”. 
Substituting into equations (30) and (31), one 
sees that the contribution of the variable part of 
E,(t) is a second-order term in t, which can be 
neglected. 

The physical meaning of this simplification 
has already been found in the preceding section: 
in an optically thin layer, the energy radiated by 
any elementary thickness of the layer is not 
absorbed by the rest of the layer. 4 can then be 
written: 

f 
T2B(t) dt - 2rr J 

T 
q = 277 B(t) dt -- 

7 0 

-277~ B(0) (4 -- T) -2~~ J 72 

B(t) dt 
0 

and since r0 = 1 - co (opaque wall), 

q = 2Tr,zo 
s 

T2 B(t) dt - XE~ B(0) - 
0 

- 477 J ‘B(t) dt -I- 299 B(O)7 
0 

t Once the d~s~ibution T(T) is established, T(y) is 
easily obtained through the relation dr = pi cfy. 
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or: 

s 

7 
q = 27~6, B(O)7 - 47~ B(t) dt + constant 

0 

After substitution into equation (31), the 
energy transfer equation is: 

Note that the correspondence y - T is to be 
estab1ish~ only after the temperature profile 
T(T) has been estab~shed, because of the 
dependence of K on temperature. This point is of 
special importance since only a certain class 
of optical lengths T have a physical correspon- 
dence y in this problem [13]. 

aY s 
7B(t) dt = C (32) 
0 RESULTS AND CONCLUSIONS 

where C is a constant. It is left now to determine 
the profile T(y) which satisfies this question. It 
can be further simplified if the optical parameters 
are used: 

d3 = ! 4oPdT 
?T (33) 

dr = pKdy 

Two numerical cases are presented on Figs. 
4 and 5 for low and high values of To, respec- 
tively. On each diagram is shown the profiie that 
would be obtained without radiation (which was 
used as the first try in the iteration) as well as the 
profiles obtained including radiation for lower 
wall emissivities e. = 0, + and 1. The following 
general remarks can be made: 

After substitution in (33): 1. Whenever the wall effects are small (Q = 0, or 

A (B) $; - 47r 
s 

TJ?(+& + 27~~ B(O)7 = C (34) 
0 

co # 0 but To $ T2) 

where A = ka(p+#uT3), hence a function of B 
through T. 

To insure a constant total flux of energy 
across the gas layer, it is necessary for the con- 
vective flux variations to be compensated by 
opposite variations of the radiative flux, 

This equation is of a non-linear integro- 
djfferential type for which no closed solution is 
availab1e. Furthermore, in the case of most 
chemically-active gases such as high-tempera- 
ture air, there is no closed formulation for either 
k, K or p since the latter, at constant pressure, is a 
function of the compressibility 2. Both k and Z 
are tabulated for high-temperature air in [12]. 
For these two reasons, the solution of equation 
(34) is only possible by iteration, like most other 
problems of radiative transfer. 

This iteration is performed without difficuhy 
when equation (34) is integrated and the two 
bo~da~ conditions of given tem~ratures at 
the walls are used. The process will converge for 
physical reasons, if the temperature profile used 
as the first approximation is that due to con- 
duction alone, provided the optical thickness 72 
has a physical meaning. 

Now, the radiation emitted by the gas layer 
near both limiting planes (no wall e&cts con- 
sidered), is directed towards the outside, in the 
upper direction near the upper wall and in the 
lower direction near the lower wall. It is then 
expected that this radiative flux reversal across 
the layer will be compensated by an increased 
convective flux near the hot wall and by a 
decreased one near the cool wall. This is illus- 
trated in Figs. 4 and 5 for the case co = 0 (no 
wall effects): Larger temperature gradients are 
introduced by radiation near the hot wail (as 
compared to the purely conductive case) while 
smaller tem~rature gradients are found near the 
cool wall. Convection to a cool wall is therefore 
reduced zy the layer radiates. As can be seen on 
Fig. 4, this conclusion also applies practically 
for all possible emissivities of the cool wall, 
because of its relatively low B(0). 

It is possible to convert the “optical” solution 
B(7) into a “physical” solution T(y) by using the 
definition (33) of B and 7: 

Although the additional radiative transfer 
makes for a higher total heat flux through the 
flow, it is therefore apparent that calculating this 
additional radiative flux to the cool wall by 
simply using the non-radiative temperature 
profile would lead in this case to an excessive 

T= ($)l’*andy =I’$ (35) 
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FIG. 4. Temperature profiles and fluxes of energy in 
air (p = 0.1 atm). (Transparent upper wail, opaque 

lower wall.) 
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FIG. 5. Temperature profiles and fluxes of energy in 
air (p = 0.1 atm). (Transparent upper wall, opaque 

lower wall.) 

value for both convective and radiative fluxes. 
If, in addition, the lower cool wall is perfectly 
reflective, the total heat transfer to the wall 
(qC alone, in this case) is effectively reduced by 
the presence of radiation. 

2. Whenever the wall effects are important (co # 0 
and T, 9 T,) 
A fraction of the energy radiated by the hot 

lower wall is absorbed by each gas layer 
2npK coB(To)dy ; hence, a continuous decrease 
of the wall flux on its path upwards on Fig. 5. 
This contribution can be conveniently broken 

GOULARD 

down into a constant flux C&T,,) across the 
layer, minus a flux in the downward direction 

J 
7 

2Tr l 0 @To) dt 
0 

which increases from zero at the lower wall to a 
maximum value at the upper wall. This arrange- 
ment is useful, because it is seen from equation 
(32) that only the variable part of the fluxes 
affects the temperature distribution. 

This variable downwards flux is often larger 
than the variable flux due to the radiation of the 
gas layers themselves : 

47~ TB(T) dt J 0 

This is especially true for the cooler layers where 
E&T,) > B(T) for most values of c0 and T,; in 
this case, these two radiative effects, which 
determine alone the temperature profile in the 
problem, introduce a net radiative flux down- 
wards. In opposition to the case where wall 
effects are negligible, the temperature gradients 
at the cool wall are therefore larger than they are 
without radiation (as can be seen in Fig. 5): this 
adjustment of the temperature profile compen- 
sates in part the net downward radiative flux at 
the upper cool wall by a larger upward con- 
vective flux. Another compensation comes from 
a reduction of the sum of these two variable 
fluxes as can be seen at the lower wall, where 
larger emissivities correspond to lower tempera- 
ture gradients and convection rates than for 
Eg = 0. 

3. Zn general 
An increased layer thickness will increase the 

role of radiation while decreasing the tempera- 
ture gradient and thus the convection flux. 
Inversely, radiation effects will be relatively 
unimportant in very thin layers. The problems of 
the type considered here, correspond to the 
intermediate case where convection and radia- 
tion are of the same order of magnitude. 

It is convenient to characterize these three 
classes of problems by writing an equation in 
non-dimensional form : 
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A+ @)A g - 
1. 

- 4n 
f 

’ [B(t) - g B(O)] dt = const. 
2. 

(36) 
0 3. 

where 

In equation (36), the following ratio plays a 
special role : 7. 

The magnitude of this non-dimensional para- 
meter Nr_, (r-c for radiation-convection) 10, 
determines the relative role of the convective 
term (the first term of equation (36) ) vs. the 11. 
radiative terms. For very large values of N,._,, 
convection is the only appreciable transport 12. 
process while radiation is the important process 
for low values of N,_-c. 

A physical interpretation of N,_, is also : 13. 

N _ = k @L/L) 
7-c ___^ 

2r,a T,4 c3*) 14. 
15. 

In equation (38), the numerator is a typical 
conductive heat flux from the hot wall across the 
gas layer and the denominator is the radiative 16. 
flux from the gas layer assumed arbitrarily at 
the hot-wall temperature. This parameter is of 
the same family as the non-dimensional quan- ,7. 
tities discussed in [7] and 191. 
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